ABSTRACT
A survey was carried out to record the status, composition and diversity of woody plant species (includes trees, shrubs and lianas) growing in the S.T. Hindu College (known as South Travancore Hindu College) campus (STHC), located in Nagercoil town, headquarter of Kanniyakumari District, Tamil Nadu, India. The survey results indicate that the total number of woody plants recorded in the STHC campus is 872 belongs to 29 families 50 genus and 50 species. The woody species comprises 90% trees, 8% shrubs and 2% lianas. Among the 29 families, Caesalpineaceae and Mimosaceae represented more number (4) of genus and species whereas the Verbinaceae family contains maximum (204) number of individuals of woody plants. About 62% of the woody species comes under <50cm GBH and 64% comes under <15cm DBH size categories. Of the 50 species, Tectona grandis represent maximum number of individuals (196) and higher relative density (RD=22.48) while maximum relative dominance noted in Pheltophorum pterocarpum (RDo=26.96) and total basal area (TBA=133462.20cm²), and maximum average basal area (ABA=3289.34cm²) was represented by Terminalia indica. Based on number of individuals/species, 74% of the species with 13.07% individuals comes under rare and very rare category, while 12% of the species with 76.83% individuals comes under dominant and predominant category. Based on relative density (RD), about 5 species are abundant with RD=72.59%, 7 species under rare (RD=10.67%) and 37 species under threatened/endangered category with RD=12.50%. In the study area, woody species diversity was estimated in the form of Shannon-Weaver’s Species Diversity (H’=2.556), Shimpson’s Dominance Index/Diversity (D/D=0.124), Simpsons Concentration of Dominance (cd/λ=0.876), Margalef’s Index of Species Richness (R_{Margalef} =7.238), Pielou’s index of Species Evenness (E_{Pielou} =0.655), and Species Heterogeneity (0.936). The results indicate that proper management and conservative measures need to be implemented for conservation of woody plant varieties in the S.T. Hindu College campus.

Key words: Woody species, Diversity Indices, S.T. Hindu College, Nagercoil, Kanniyakumari District, Tamil Nadu.
INTRODUCTION

The natural forests are diminishing under pressures of urbanization and other human interferences. Urban landscapes and trees have been wonderful silent major urban infrastructure assets in our cities for decades and even centuries. Cities are biodiversity hot spots due to their variety of habitats available in public and private open spaces, including front and backyards. Planting trees in rural as well as in and around human settlements and cities will help increasing the forest cover, reduce pressure on forests and provide various services and goods to meet several demands. Trees are also important in the socio-cultural lives of the people. Floristic diversity assessment is tried at local levels to understand the present status and make effective management strategies for conservation. Trees outside the forest are an important resource and play a key role in sustainable biodiversity management. Since species diversity is important to maintain heterogeneity of a stable ecosystem, the diversity is to be preserved through appropriate measures. There is a need for an accelerated survey of plant resources with the objectives to conserve the aesthetic and economically important wild and semi-domesticated species. Various studies reported the status, composition, phytosociological attributes and diversity of flora in the campus of educational institutes in Tamil Nadu. The present study was carried out to document the status, distribution pattern and diversity of woody plant species in the campus of S.T. Hindu College (known as South Travancore Hindu College) located in Nagercoil Municipality town, the headquarter of Kanniyakumari District, Tamil Nadu, India.

MATERIALS AND METHODS

Study Area

The study area, S.T. Hindu College (STHC), known as South Travancore Hindu College, located (8.182903°N; 77°40'638''E) in Nagercoil Municipality Town, headquarter of Kanniyakumari district, Tamil Nadu, India. Kanniyakumari district is situated in the southernmost tip of Tamil Nadu, Southern Peninsular India (77.15’-77.30’E; 8.30’-8.15’ N) located in the part of Southern Western Ghats. The South Travancore Hindu College Association with temple trusts and individuals as shareholders was registered as a company on 1952 with a view to promoting the cause of higher education is South Travancore, now known as Kanniyakumari District. The college was granted affiliation on 1952 by the University of Travancore. The college was started as an intermediate college in 1952. In 1957, the college was first came to be affiliated to the University of Madras, then to Madurai Kamaraj University in 1966 and finally to Manonmaniam Sundaranar University in 1990. The college is located in the central part of Nagercoil, a semi-urban town, near Chettikulam junction. The college campus enriched with beautiful vegetation and occupies a land area of 21.95 acres.

Data Collection

An inventory of woody plant species was conducted in the campus of S.T. Hindu College, from July, 2014 to August, 2014. All woody species (Girth size ≥10cm) present in the study area were identified and recorded by the botanical name or by local name that was later confirmed by using the regional flora. All individuals of woody species (trees, shrubs and lianas) are counted and recorded except the individuals in hedgerows. No herbs were counted due to the difficulty in differentiating stems. The botanical inventory was conducted only once in the study area. Thus, the seasonal variation in woody species structure was not assessed. Species were identified using regional floras for all documental species. The binomial and author citation were checked thoroughly with IPNI. The woody (climbers, shrub and trees) plant’s community organization, distribution and diversity studies were conducted by survey method. In the present study, the woody plants (with a girth size ≥10cm at breast height-GBH) in the study area were counted. Woody species were assigned to different size classes based on GBH: 10-50, 50-100, 100-150, 150-200, ≥200cm; and to different DBH size classes: <15, 15-30, 30-45, 45-60 and ≥60cm.
Data Analysis
Various attributes and diversity indices of woody plants were determined following standard methods. The basal area of each species is computed using the values of GBH and DBH to determine total basal area of all species and average basal area of individual species as well as all the species. The basal area was also used to determine the relative density and relative dominance of woody species. Based on the number of individuals in each species, the woody plants were grouped into very rare (represented by <2 individuals), rare (2 - <10 individuals), common (10 - <25 individuals), dominant (25-50 individuals) and predominant (>50 individuals) following Kadavul and Parthasarathy. The various woody species were scored according to their relative densities (RD) to determine, weather the species comes under abundant (RD ≥ 5.00); frequent (4.0 ≤ RD ≤ 4.99); occasional (3.00 ≤ RD ≤ 3.99); rare (1.00 ≤ RD ≤ 2.99); or threatened / endangered (0.00 ≤ RD ≤ 1.00) category (Daniel et al., 2012). Ten top ranking species were determined based on total value of the species for all phytosociological parameters of woody species. Data obtained from tree species composition was analyzed to obtain relative density (RD), relative abundance (RA/Pi) and the relative dominance was estimated based on total basal area (RD0).

\[\text{Relative Density (RD\%)} = \frac{\text{No. of individuals of each species}}{\text{Total no. of individuals of all species}} \times 100 \]

\[\text{Relative abundance (RA/Pi)} = \frac{\text{Relative density of species}}{100} \]

\[\text{Dominance (Do)} = \frac{\text{Basal area of the individual species}}{\text{Basal area of all the species}} \]

\[\text{Relative Dominance (RD0\%)} = \frac{\text{Total Basal Area of each species}}{\text{Total Basal Area of all species}} \times 100 \]

Standard methods were followed to estimate different diversity indices. Data obtained from relative density (abundance) \((P_i = \frac{n_i}{N})\) was used to compute the Shannon - Weiner’s (Weiner’s) Diversity index for the study area, i.e., \(H' = -\sum P_i \ln P_i\). Where, \(H'\) =Shannon-Weiner’s Diversity index; \(P_i\) =relative abundance of the \(i^{th}\) species; \(\ln P_i\) =Natural logarithm of the corresponding relative abundance \((P_i = \frac{n_i}{N})\) of the species. Margalef index of species richness (SR) is calculated by using the formula: \(\text{SR} = \frac{S-1}{\ln(N)}\); Where, \(S\) =Number of species; \(N\) =Total number of individuals. Piello’s index of species evenness was computed using the formula: \(E_{\text{Piello}} = \frac{H'}{\ln(S)}\). Where, \(H'\) = Shannon-Weiner’s Diversity Index; \(\ln(N)\) = Natural logarithm of species; \(S\) =Number of species. Simpson’s diversity (D) is calculated by using the formula: \(D = 1 - \lambda\); \(\lambda\) = Simpson’s concentration of dominance \((1-\sum P_i^2)\); \(P_i = \frac{n_i}{N}\); \(n_i\) =Number of individuals in each species; \(N\) =Total number of individuals in all species. Simpson’s Dominance Index (DI) was determined by using the formula: \(\text{DI} = \sum (P_i)^2\); Where, \(P_i = \frac{n_i}{N}\). Species heterogeneity, defined as the reciprocal of Simpson index or under root of concentration of dominance \((cd)\), was determined as: \(= \frac{1}{\sqrt{cd}}\).

RESULTS AND DISCUSSION
Attributes of woody species
In this study, the data collected from S.T. Hindu College campus by survey method was analyzed to record the phytosociological attributes and diversity of woody plants. Table 1- shows the botanical name, common name, family, number of individuals/species, GBH (cm) and DBH (cm) of woody plants identified. A total of 50 woody species belongs to 50 genus and 29 families with 872 individuals were recorded in the study area. A floristic study carried out by Parthipan et al. in the campus of S.T. Hindu College indicate the presence of 89 woody species (includes 47 trees and 42 shrubs). The less number of woody species recorded in this study as compared to number of species reported earlier may be due to counting woody species with ≤10cm girth (gbh) size only. Figure 1 shows the distribution pattern of woody species recorded in the study area includes 45 trees, 4 shrubs and 1 liana. Among the species,
Tectona grandis having maximum number of 196 individuals and is followed by Leucaena leucocephala with 152 individuals and Cocos nucifera with 137 individuals in STHC campus.

STHC campus has two dominant family – Caesalpinaeae and Mimosaceae, with 5 genus and species each, and one co-dominant family (Bigoniaceae) with 4 genus and species (Figure 2). Top 10 families and species having more number of individuals are presented in figures 2 and 3. Among the families, Verbinaceae having 204 individuals and is followed by Mimosaceae with 161 individuals and Arecaeae with 140 individuals (Figure 3). Among the top 10 species (Figure 4), Tectona grandis is dominant with 196 individuals (22.48%) and Leucaena leucocephala is co-dominant with 152 individuals (17.43%), and Cocos nucifera with 137 individuals (15.71%).

GBH and DBH Measurements

The measurement of tree growth provided important information about the dynamics of that ecosystem. In the present study, the girth/diameter (GBH/DBH) size of the woody species (>10 cm/>3.18 cm) were measured and used to analyze various other factors. The girth of the woody species varied from 10 cm GBH/3.18 cm DBH (in Duranta plumieri) to 349 cm GBH/111.15 cm DBH (in Peltophorum pterocarpum) and the average girth size ranges from 13.25 cm GBH/4.22 cm DBH (in Duranta plumier) to 201.50 cm GBH/64.17 cm DBH (in Enterolobium saman) (Table 1).

The estimated total girth (GBH) size of woody plants was ranged from 25 cm (Muntingia calabara) to 13629.50 cm (Techtona grandis) with an average of 1222.97 cm per species and 70.12 cm per individual. The total diameter (DBH) of the woody plants was estimated and it was ranged from 7.96 cm (Muntingia calabara) to 4340.61 cm (Techtona grandis) with an average of 389.48 cm/species and 22.33 cm/individual. Usually, 200 cm girth size of trees is considered as mature. In STHC campus, from the total of 872 individuals of 50 woody species counted, 9 individuals (3 from Azadirachta indica and 2 from Delonix regia, and each one from Mangifera indica, Syzigium cumini, Terminalia indica, and Enterolobium saman) belongs to 6 species measured over 200 cm GBH/64 cm DBH (Table 2).
Category of Woody Plants

The woody plants identified in the study area were categorized based on GBH/DBH size classes, no. of individuals/species, and relative density/species. To determine the population structure of woody species in the study area, the plants were categorized into different girth-class and diameter-class. The size class distribution of woody species can provide a reliable overall indication of changes in species selection overtime\(^{24, 25}\). Although data on species distribution in time are not available, size class distributions to differentiate between species which have been planted over a number of years (which should have a more evenly distributed age structure), from species which have been selected for planting recently (whose distribution should be dominated by smaller trees), or species which have been planted widely in the past and recently been discontinued (whose distribution should therefore be dominated by larger trees)\(^{26, 27}\).

Table 1: List of woody species recorded in the study area of S.T. Hindu College Nagercoil, Kanniyakumari District, Tamil Nadu

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Botanical Name of the species</th>
<th>Common name</th>
<th>Family</th>
<th>Life form</th>
<th>NI</th>
<th>GBH (cm)</th>
<th>DBH (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vatica mangium Wild</td>
<td>Mangium</td>
<td>Mimosaceae</td>
<td>Tree</td>
<td>1</td>
<td>72.50</td>
<td>19.57</td>
</tr>
<tr>
<td>2</td>
<td>Albizia lebbeck Benth (Lin)</td>
<td>Vagni</td>
<td>Mimosaceae</td>
<td>Tree</td>
<td>4</td>
<td>82.05</td>
<td>26.44</td>
</tr>
<tr>
<td>3</td>
<td>Bombax ceiba L.</td>
<td>Bomi</td>
<td>Acanthaceae</td>
<td>Tree</td>
<td>4</td>
<td>21.75</td>
<td>6.93</td>
</tr>
<tr>
<td>4</td>
<td>Lannea aquinata L.</td>
<td>Sela</td>
<td>Moraceae</td>
<td>Tree</td>
<td>1</td>
<td>89.10</td>
<td>28.47</td>
</tr>
<tr>
<td>5</td>
<td>Bambusa arundinacea Wild</td>
<td>Moongil</td>
<td>Poaceae</td>
<td>Tree</td>
<td>4</td>
<td>24.75</td>
<td>7.88</td>
</tr>
<tr>
<td>6</td>
<td>Broussonetia villosa Hook.</td>
<td>Paper rose</td>
<td>Nyctaginaceae</td>
<td>Tree</td>
<td>10</td>
<td>25.10</td>
<td>7.99</td>
</tr>
<tr>
<td>7</td>
<td>Callistemon viminalis L.</td>
<td>Bottle brush</td>
<td>Myrtaceae</td>
<td>Tree</td>
<td>1</td>
<td>54.00</td>
<td>17.00</td>
</tr>
<tr>
<td>8</td>
<td>Cupressus sempervirens L.</td>
<td>H induced</td>
<td>Cupressaceae</td>
<td>Tree</td>
<td>4</td>
<td>105.00</td>
<td>21.00</td>
</tr>
<tr>
<td>9</td>
<td>Cassia fistula L.</td>
<td>Kaudal</td>
<td>Cassialegnae</td>
<td>Tree</td>
<td>8</td>
<td>58.61</td>
<td>21.86</td>
</tr>
<tr>
<td>10</td>
<td>Conocarpus elegans L.</td>
<td>Chittu</td>
<td>Arecaceae</td>
<td>Tree</td>
<td>2</td>
<td>140.00</td>
<td>44.59</td>
</tr>
<tr>
<td>11</td>
<td>Cocos nucifera L.</td>
<td>Thennai</td>
<td>Arecaceae</td>
<td>Tree</td>
<td>137</td>
<td>98.81</td>
<td>25.73</td>
</tr>
<tr>
<td>12</td>
<td>Cryptocarya alata L.</td>
<td>Thanrods</td>
<td>Bignoniaceae</td>
<td>Tree</td>
<td>1</td>
<td>46.00</td>
<td>14.64</td>
</tr>
<tr>
<td>13</td>
<td>Cycas circinalis L.</td>
<td>Cicas</td>
<td>Cycadaceae</td>
<td>Tree</td>
<td>1</td>
<td>182.00</td>
<td>54.96</td>
</tr>
<tr>
<td>14</td>
<td>Delonix regia (Boo) Raf.</td>
<td>Gomukkumattu</td>
<td>Caesalpiniaceae</td>
<td>Tree</td>
<td>12</td>
<td>90.17</td>
<td>28.72</td>
</tr>
<tr>
<td>15</td>
<td>Dracaena angustifolia Medic.</td>
<td>Drakana</td>
<td>Liliaceae</td>
<td>Shrub</td>
<td>13</td>
<td>20.67</td>
<td>5.86</td>
</tr>
<tr>
<td>16</td>
<td>Duranta plumieri Jacq.</td>
<td>Golden dew drop</td>
<td>Verbenaceae</td>
<td>Tree</td>
<td>8</td>
<td>13.25</td>
<td>4.42</td>
</tr>
<tr>
<td>17</td>
<td>Eleocarpus trigona R. Roth.</td>
<td>Uluriathan</td>
<td>Euphorbiaceae</td>
<td>Tree</td>
<td>1</td>
<td>74.00</td>
<td>23.57</td>
</tr>
<tr>
<td>18</td>
<td>Emblica officinalis Guertn.</td>
<td>Nelli</td>
<td>Euphorbiaceae</td>
<td>Tree</td>
<td>4</td>
<td>40.00</td>
<td>12.74</td>
</tr>
<tr>
<td>19</td>
<td>Erodesia ciliata (Becc) Prim.</td>
<td>Rain tree</td>
<td>Moraceae</td>
<td>Tree</td>
<td>2</td>
<td>201.50</td>
<td>64.17</td>
</tr>
<tr>
<td>20</td>
<td>Ficus religiosa L.</td>
<td>Arusa</td>
<td>Moraceae</td>
<td>Tree</td>
<td>1</td>
<td>43.00</td>
<td>13.69</td>
</tr>
<tr>
<td>21</td>
<td>Elaeocarpus rosmarinus L.</td>
<td>Sembaruthi</td>
<td>Malvaceae</td>
<td>Shrub</td>
<td>11</td>
<td>23.16</td>
<td>6.80</td>
</tr>
<tr>
<td>22</td>
<td>Jacaranda microphylla D. Don.</td>
<td>Jacaranda</td>
<td>Bignoniaceae</td>
<td>Tree</td>
<td>1</td>
<td>36.00</td>
<td>11.46</td>
</tr>
<tr>
<td>23</td>
<td>Lawsonia inermis L.</td>
<td>Marigold</td>
<td>Lythraceae</td>
<td>Tree</td>
<td>1</td>
<td>30.00</td>
<td>9.55</td>
</tr>
<tr>
<td>24</td>
<td>Leucaena leucocephala (Lam) de W.</td>
<td>Chuppol</td>
<td>Mimosaceae</td>
<td>Tree</td>
<td>192</td>
<td>32.70</td>
<td>10.29</td>
</tr>
<tr>
<td>25</td>
<td>Mimusops elengi L.</td>
<td>Huppu</td>
<td>Sapotaceae</td>
<td>Tree</td>
<td>12</td>
<td>69.33</td>
<td>28.45</td>
</tr>
<tr>
<td>26</td>
<td>Mangifera indica L.</td>
<td>Mango</td>
<td>Anacardiaceae</td>
<td>Tree</td>
<td>8</td>
<td>145.38</td>
<td>46.35</td>
</tr>
<tr>
<td>27</td>
<td>Michelia champaca L.</td>
<td>Champakam</td>
<td>Magnoliaceae</td>
<td>Tree</td>
<td>1</td>
<td>43.00</td>
<td>13.69</td>
</tr>
<tr>
<td>28</td>
<td>Millettia hortensis L.</td>
<td>Kannavpu</td>
<td>Bignoniaceae</td>
<td>Tree</td>
<td>4</td>
<td>22.25</td>
<td>7.08</td>
</tr>
<tr>
<td>29</td>
<td>Mimusops elengi L.</td>
<td>Madhuchal</td>
<td>Sapotaceae</td>
<td>Tree</td>
<td>4</td>
<td>79.25</td>
<td>23.97</td>
</tr>
<tr>
<td>30</td>
<td>Moringa oleifera R. Var.</td>
<td>Manjusha</td>
<td>Rubiaceae</td>
<td>Tree</td>
<td>8</td>
<td>60.61</td>
<td>19.31</td>
</tr>
<tr>
<td>31</td>
<td>Musanga cauliflora L.</td>
<td>Kuvapalum</td>
<td>Tiliaceae</td>
<td>Tree</td>
<td>1</td>
<td>25.00</td>
<td>9.76</td>
</tr>
<tr>
<td>32</td>
<td>Morinda citrifolia (L.) Spr.</td>
<td>Kururopati</td>
<td>Rutaceae</td>
<td>Tree</td>
<td>4</td>
<td>18.00</td>
<td>5.75</td>
</tr>
<tr>
<td>33</td>
<td>Peltiphyllum pterocarpum (DC) Backer. H.</td>
<td>Perumkooni</td>
<td>Bignoniaceae</td>
<td>Tree</td>
<td>67</td>
<td>140.68</td>
<td>44.80</td>
</tr>
<tr>
<td>34</td>
<td>Phoradendron dubium (Roth) Bih.</td>
<td>Kothamalai</td>
<td>Moraceae</td>
<td>Tree</td>
<td>2</td>
<td>44.50</td>
<td>14.17</td>
</tr>
<tr>
<td>35</td>
<td>Plumeria obtusa L.</td>
<td>White bing tree</td>
<td>Apocynaceae</td>
<td>Tree</td>
<td>1</td>
<td>80.00</td>
<td>25.48</td>
</tr>
<tr>
<td>36</td>
<td>Polyalthia longifolia (Som) Thw.</td>
<td>Aksa</td>
<td>Annonaceae</td>
<td>Tree</td>
<td>37</td>
<td>55.05</td>
<td>27.99</td>
</tr>
<tr>
<td>37</td>
<td>Pongamia pinnata (L.) Pierre</td>
<td>Pongam</td>
<td>Caesalpiniaceae</td>
<td>Tree</td>
<td>10</td>
<td>73.70</td>
<td>23.47</td>
</tr>
<tr>
<td>38</td>
<td>Prosopis spicigera Lin.</td>
<td>Yanni</td>
<td>Fabaceae</td>
<td>Shrub</td>
<td>5</td>
<td>76.20</td>
<td>24.27</td>
</tr>
<tr>
<td>39</td>
<td>Psidium guajava L.</td>
<td>Kyavya</td>
<td>Myrtaceae</td>
<td>Tree</td>
<td>2</td>
<td>17.00</td>
<td>5.42</td>
</tr>
<tr>
<td>40</td>
<td>Sambucus australis L.</td>
<td>Nastad</td>
<td>Saclaceae</td>
<td>Tree</td>
<td>20</td>
<td>28.65</td>
<td>9.12</td>
</tr>
<tr>
<td>41</td>
<td>Sarcococca australis (Rost) de WRd.</td>
<td>Aksam</td>
<td>Caricinaceae</td>
<td>Tree</td>
<td>2</td>
<td>60.50</td>
<td>19.27</td>
</tr>
<tr>
<td>42</td>
<td>Swietenia mahagoni (L.)</td>
<td>Mahageni</td>
<td>Meliaceae</td>
<td>Tree</td>
<td>10</td>
<td>71.80</td>
<td>22.87</td>
</tr>
<tr>
<td>43</td>
<td>Syzygium cumini (L.) Skerrett</td>
<td>Navilumari</td>
<td>Myrtaceae</td>
<td>Tree</td>
<td>2</td>
<td>196.50</td>
<td>62.58</td>
</tr>
<tr>
<td>44</td>
<td>Tabernaemontana divaricata R. Br. exforns & Schult</td>
<td>Nandu vattu</td>
<td>Apocynaceae</td>
<td>Shrub</td>
<td>2</td>
<td>23.00</td>
<td>7.33</td>
</tr>
<tr>
<td>45</td>
<td>Tapinoloba indica Lin.</td>
<td>Pal</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>2</td>
<td>158.50</td>
<td>50.48</td>
</tr>
<tr>
<td>46</td>
<td>Terminalia arjuna (L.) B.K. & K.</td>
<td>Mannapoo</td>
<td>Bignoniaceae</td>
<td>Tree</td>
<td>20</td>
<td>29.20</td>
<td>9.30</td>
</tr>
<tr>
<td>47</td>
<td>Terminalia catappa L.</td>
<td>Thelka</td>
<td>Verbenaceae</td>
<td>Tree</td>
<td>196</td>
<td>69.54</td>
<td>22.15</td>
</tr>
<tr>
<td>48</td>
<td>Terminalia ivorensis (L.)</td>
<td>Badass</td>
<td>Combretaceae</td>
<td>Tree</td>
<td>4</td>
<td>75.60</td>
<td>24.36</td>
</tr>
<tr>
<td>49</td>
<td>Trema orientalis Soland.</td>
<td>Poovarasu</td>
<td>Malvaceae</td>
<td>Tree</td>
<td>2</td>
<td>117.50</td>
<td>37.42</td>
</tr>
<tr>
<td>50</td>
<td>Ziziphus mauritiana Lamk. (1) Guert, non Miller</td>
<td>Ellithi</td>
<td>Rhamnaceae</td>
<td>Tree</td>
<td>2</td>
<td>89.50</td>
<td>25.58</td>
</tr>
</tbody>
</table>

NI - Number of individuals

Average of DBH & GBH per individual
Table 2: Woody plants having more than 200cm GBH and 60cm DBH size category

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the woody species</th>
<th>No. of individuals</th>
<th>GBH (cm)</th>
<th>DBH (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Azadirachta indica</td>
<td>3</td>
<td>212.00</td>
<td>67.52</td>
</tr>
<tr>
<td>2</td>
<td>Delonix regia</td>
<td>2</td>
<td>229.00</td>
<td>72.93</td>
</tr>
<tr>
<td>3</td>
<td>Entrolobium saman</td>
<td>1</td>
<td>208.00</td>
<td>66.21</td>
</tr>
<tr>
<td>4</td>
<td>Mangifera indica</td>
<td>1</td>
<td>232.00</td>
<td>73.89</td>
</tr>
<tr>
<td>5</td>
<td>Syzigium cumini</td>
<td>1</td>
<td>211.00</td>
<td>67.20</td>
</tr>
<tr>
<td>6</td>
<td>Tamarindus indica</td>
<td>1</td>
<td>289.00</td>
<td>91.40</td>
</tr>
</tbody>
</table>

Table 3: Category of woody species recorded in the study area of STHC

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Girth (gbh) size class</th>
<th>No. of Species & (%)</th>
<th>No. of individuals & (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10cm to 50cm</td>
<td>31 (62%)</td>
<td>337 (38.64%)</td>
</tr>
<tr>
<td>2</td>
<td>50cm to 100cm</td>
<td>26 (52%)</td>
<td>384 (44.04%)</td>
</tr>
<tr>
<td>3</td>
<td>100cm to 150cm</td>
<td>14 (28%)</td>
<td>102 (11.70%)</td>
</tr>
<tr>
<td>4</td>
<td>150cm to 200cm</td>
<td>8 (16%)</td>
<td>27 (3.10%)</td>
</tr>
<tr>
<td>5</td>
<td>≥200cm</td>
<td>7 (14%)</td>
<td>22 (2.52%)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50 (100%)</td>
<td>872 (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diameter (dbh) size class</th>
<th>No. of Species & (%)</th>
<th>No. of individuals & (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 15cm</td>
<td>32 (64%)</td>
<td>321 (36.81%)</td>
</tr>
<tr>
<td>2</td>
<td>15cm to 30cm</td>
<td>27 (54%)</td>
<td>357 (40.94%)</td>
</tr>
<tr>
<td>3</td>
<td>30cm to 45cm</td>
<td>15 (30%)</td>
<td>140 (16.05%)</td>
</tr>
<tr>
<td>4</td>
<td>45cm to 60cm</td>
<td>9 (18%)</td>
<td>25 (2.89%)</td>
</tr>
<tr>
<td>5</td>
<td>≥60cm</td>
<td>7 (14%)</td>
<td>29 (3.33%)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50 (100%)</td>
<td>872 (100%)</td>
</tr>
</tbody>
</table>

Based on number of individuals

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Woody species category</th>
<th>No. of Species</th>
<th>Total No. of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very rare (< 2)</td>
<td>11 (22%)</td>
<td>11 (1.26%)</td>
</tr>
<tr>
<td>2</td>
<td>Rare (2 to 10)</td>
<td>26 (52%)</td>
<td>98 (11.24%)</td>
</tr>
<tr>
<td>3</td>
<td>Common (10 to 25)</td>
<td>7 (14%)</td>
<td>93 (10.67%)</td>
</tr>
<tr>
<td>4</td>
<td>Dominant (25 to 50)</td>
<td>1 (2%)</td>
<td>37 (4.24%)</td>
</tr>
<tr>
<td>5</td>
<td>Predominant (> 50)</td>
<td>5 (10%)</td>
<td>633 (72.59%)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50 (100%)</td>
<td>872 (100%)</td>
</tr>
</tbody>
</table>

Based on relative density (RDe%)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Woody species category</th>
<th>No. of Species</th>
<th>Total No. of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abundant (≥ 5)</td>
<td>5 (10%)</td>
<td>72.59%</td>
</tr>
<tr>
<td>2</td>
<td>Frequent (4 - 4.99)</td>
<td>1 (2%)</td>
<td>4.24%</td>
</tr>
<tr>
<td>3</td>
<td>Occasional (3 - 3.99)</td>
<td>0 (0%)</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>Rare (1 to 2.99)</td>
<td>7 (14%)</td>
<td>10.67%</td>
</tr>
<tr>
<td>5</td>
<td>Threatened/Endangered (0 - 0.99)</td>
<td>37 (64%)</td>
<td>12.50%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50 (100%)</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 4: Estimation of quantitative analysis of woody plants recorded in the STHC campus, Nagercoil, Kanniyakumari District, Tamil Nadu, India

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Botanical Name of the species</th>
<th>NI</th>
<th>Total BA (cm²)</th>
<th>Average BA (cm²)</th>
<th>RA (Pi)</th>
<th>RD (%)</th>
<th>Do (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acacia mangium</td>
<td>1</td>
<td>306.20</td>
<td>306.20</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0006</td>
</tr>
<tr>
<td>2</td>
<td>Albizia lebbeck</td>
<td>4</td>
<td>2213.06</td>
<td>555.27</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0045</td>
</tr>
<tr>
<td>3</td>
<td>Alnus squamosa</td>
<td>4</td>
<td>153.51</td>
<td>38.38</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0003</td>
</tr>
<tr>
<td>4</td>
<td>Azadirachta indica</td>
<td>81</td>
<td>67233.36</td>
<td>830.89</td>
<td>0.093</td>
<td>9.29</td>
<td>0.1599</td>
</tr>
<tr>
<td>5</td>
<td>Bambusa arundinacea</td>
<td>4</td>
<td>200.08</td>
<td>50.02</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0004</td>
</tr>
<tr>
<td>6</td>
<td>Bougainvillea spectabilis</td>
<td>10</td>
<td>608.20</td>
<td>60.82</td>
<td>0.012</td>
<td>1.15</td>
<td>0.0012</td>
</tr>
<tr>
<td>7</td>
<td>Callicostemon lanceolatus</td>
<td>1</td>
<td>232.35</td>
<td>232.35</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0005</td>
</tr>
<tr>
<td>8</td>
<td>Carapa urens</td>
<td>3</td>
<td>2649.56</td>
<td>883.19</td>
<td>0.003</td>
<td>0.34</td>
<td>0.0054</td>
</tr>
<tr>
<td>9</td>
<td>Casalia fistula</td>
<td>8</td>
<td>3444.51</td>
<td>431.80</td>
<td>0.009</td>
<td>0.92</td>
<td>0.0070</td>
</tr>
<tr>
<td>10</td>
<td>Casuarina equisetifolia</td>
<td>2</td>
<td>3132.64</td>
<td>1566.32</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0063</td>
</tr>
<tr>
<td>11</td>
<td>Cocos nucifera</td>
<td>137</td>
<td>76217.02</td>
<td>556.33</td>
<td>0.157</td>
<td>15.71</td>
<td>0.1540</td>
</tr>
<tr>
<td>12</td>
<td>Creoscutia alata</td>
<td>1</td>
<td>168.56</td>
<td>168.56</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0003</td>
</tr>
<tr>
<td>13</td>
<td>Cycas circinalis</td>
<td>1</td>
<td>2638.44</td>
<td>2638.44</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0053</td>
</tr>
<tr>
<td>14</td>
<td>Delonix regia</td>
<td>12</td>
<td>13495.70</td>
<td>1124.64</td>
<td>0.014</td>
<td>1.38</td>
<td>0.0273</td>
</tr>
<tr>
<td>15</td>
<td>Drotera angustifolia</td>
<td>3</td>
<td>105.09</td>
<td>35.03</td>
<td>0.003</td>
<td>0.34</td>
<td>0.0002</td>
</tr>
<tr>
<td>16</td>
<td>Duranta plumeri</td>
<td>8</td>
<td>116.21</td>
<td>14.53</td>
<td>0.009</td>
<td>0.92</td>
<td>0.0002</td>
</tr>
<tr>
<td>17</td>
<td>Eleocarpus tuberculatus</td>
<td>4</td>
<td>436.33</td>
<td>436.32</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0009</td>
</tr>
<tr>
<td>18</td>
<td>Eph趔ia officinalis</td>
<td>4</td>
<td>538.32</td>
<td>134.58</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0011</td>
</tr>
<tr>
<td>19</td>
<td>Eucalyptus mamospermos</td>
<td>3</td>
<td>1974.70</td>
<td>658.23</td>
<td>0.003</td>
<td>0.34</td>
<td>0.0040</td>
</tr>
<tr>
<td>20</td>
<td>Eucaphyta indica</td>
<td>8</td>
<td>15905.02</td>
<td>1988.51</td>
<td>0.009</td>
<td>0.92</td>
<td>0.0321</td>
</tr>
<tr>
<td>21</td>
<td>Micrella champaca</td>
<td>1</td>
<td>147.20</td>
<td>147.20</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>Millingtonia hortensis</td>
<td>4</td>
<td>216.82</td>
<td>54.20</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0004</td>
</tr>
<tr>
<td>23</td>
<td>Mucuna pruriens</td>
<td>4</td>
<td>1815.03</td>
<td>453.76</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0037</td>
</tr>
<tr>
<td>24</td>
<td>Mormona pubescens</td>
<td>8</td>
<td>2508.68</td>
<td>313.58</td>
<td>0.009</td>
<td>0.92</td>
<td>0.0051</td>
</tr>
<tr>
<td>25</td>
<td>Muntingia calabura</td>
<td>1</td>
<td>49.76</td>
<td>49.76</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0001</td>
</tr>
<tr>
<td>26</td>
<td>Murraya koenigii</td>
<td>4</td>
<td>104.50</td>
<td>26.07</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0002</td>
</tr>
<tr>
<td>27</td>
<td>Peltophorum pterocarpum</td>
<td>67</td>
<td>133462.20</td>
<td>1991.97</td>
<td>0.077</td>
<td>7.68</td>
<td>0.2696</td>
</tr>
<tr>
<td>28</td>
<td>Pithecobium dulce</td>
<td>2</td>
<td>435.94</td>
<td>217.97</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0009</td>
</tr>
<tr>
<td>29</td>
<td>Plumeria obtusa</td>
<td>1</td>
<td>509.90</td>
<td>509.90</td>
<td>0.001</td>
<td>0.11</td>
<td>0.0010</td>
</tr>
<tr>
<td>30</td>
<td>Polyscias longifolia</td>
<td>37</td>
<td>22472.21</td>
<td>607.36</td>
<td>0.042</td>
<td>4.24</td>
<td>0.0454</td>
</tr>
<tr>
<td>31</td>
<td>Pongamia pinnata</td>
<td>10</td>
<td>4544.82</td>
<td>454.48</td>
<td>0.012</td>
<td>1.15</td>
<td>0.0092</td>
</tr>
<tr>
<td>32</td>
<td>Proptis species</td>
<td>5</td>
<td>2329.22</td>
<td>465.84</td>
<td>0.006</td>
<td>0.57</td>
<td>0.0047</td>
</tr>
<tr>
<td>33</td>
<td>Psidium guyava</td>
<td>2</td>
<td>46.70</td>
<td>23.35</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0001</td>
</tr>
<tr>
<td>34</td>
<td>Sanaulum album</td>
<td>20</td>
<td>1462.98</td>
<td>73.15</td>
<td>0.023</td>
<td>2.29</td>
<td>0.0030</td>
</tr>
<tr>
<td>35</td>
<td>Saraca asoca</td>
<td>2</td>
<td>583.98</td>
<td>291.99</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0012</td>
</tr>
<tr>
<td>36</td>
<td>Swietenia malagur</td>
<td>10</td>
<td>4697.61</td>
<td>469.76</td>
<td>0.012</td>
<td>1.15</td>
<td>0.0095</td>
</tr>
<tr>
<td>37</td>
<td>Syzygium cumini</td>
<td>2</td>
<td>6182.03</td>
<td>3091.02</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0125</td>
</tr>
<tr>
<td>38</td>
<td>Tabernaemontana divaricata</td>
<td>2</td>
<td>84.39</td>
<td>42.20</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>39</td>
<td>Tamarindus indica</td>
<td>2</td>
<td>6578.28</td>
<td>3280.14</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0133</td>
</tr>
<tr>
<td>40</td>
<td>Tecoma stan</td>
<td>20</td>
<td>1439.49</td>
<td>71.97</td>
<td>0.023</td>
<td>2.29</td>
<td>0.0029</td>
</tr>
<tr>
<td>41</td>
<td>Tectona grandis</td>
<td>196</td>
<td>84907.07</td>
<td>433.20</td>
<td>0.225</td>
<td>22.48</td>
<td>0.1715</td>
</tr>
<tr>
<td>42</td>
<td>Terminalia catappa</td>
<td>4</td>
<td>1888.02</td>
<td>472.00</td>
<td>0.005</td>
<td>0.46</td>
<td>0.0038</td>
</tr>
<tr>
<td>43</td>
<td>Thepsea populnea</td>
<td>2</td>
<td>2237.85</td>
<td>1118.93</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0045</td>
</tr>
<tr>
<td>44</td>
<td>Ziziphus mauritiana</td>
<td>2</td>
<td>1282.61</td>
<td>641.31</td>
<td>0.002</td>
<td>0.23</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

| Total | 872 | 495052.61 | 31721.67 | 1.000 | 100.00 | 1.0000 | 100.00 |

BA - Basal area; RA - Relative abundance; RD - Relative density; D - Dominance; RDo - Relative dominance.
In the study area, most of individual comes under the girth size class of 15cm to 100cm GBH shows 44.04% (384 individuals and 26 species), whereas the diameter size class of <15cm to 30cm DBH shows 40.94% (257 individual and 27 species). This indicates that the majority of the woody species are young and recently planted. Very few species are found in the >200cm GBH and >60cm DBH size class appears to indicate that these species are matured and being gradually phased out in the study area. These species appear to be replaced by other plants.

The distribution pattern of woody species scored according to different categories such as number of individuals per species and relative density in the study area. Based on the number of individuals/species, the woody plants are categorized into very rare, rare, common, dominant, and pre-dominant. In STHC campus, most of the species (52%) comes under rare category. In general, rare and very rare category (<10 individual/species) found in 37 species (11.37%) of woody plants while 6 species comes under dominant and predominant category with 670 individuals which is about 76.83% (Table 3). Based on relative density, the woody species are categorized into abundant, frequent, occasional, rare and threatened/endangered. In the study area, about 78% species comes under rare and threatened category (RD 0 to 2.99).

Phytosociological attributes of woody species

The results of relative abundance (RA/Pi) of woody species presented in table 4 and it ranges from 0.001 to 0.225, and maximum RA is noted in *Tectona grandis* and is followed by *Leucaena lucephalpa* (0.174) and *Cocos nucifera* (0.154). Relative density (RD %) of woody species recorded in STHC campus presented in table 4 and it ranges from 0.11 to 22.48 with a maximum in *Tectona grandis*. Figure 5 shows top 10 woody species having maximum relative density. Among the woody plants, above 10% of RD was noted in *Tectona grandis* (22.48%), *Leucaena lucephalpa* (17.41%) and *Cocos nucifera* (15.71%). The results of relative dominance (RDo) indicate that the relative dominance of woody species ranged from 0.01% (in *Psidium gujava* and *Muntingia calabra*) to 26.96% (in *Peltophorum pterocarpum").

Total basal area (Dominance) of the woody species considered as dominance and relative dominance parameter. The TBA of all the woody species (Table 4) in the study area is estimated as 495065.55cm² and is ranged from 46.70cm² (in *Psidium gujava*) to 133462.26cm² (in *Peltophorum pterocarpum*) with an average of 9901.31cm²/species and 567.74cm²/individual. Figure 7 shows the top 10 woody species having maximum TBA (dominance). Among the top 10 species, *Peltophorum pterocarpum* shows more TBA (133462cm²) and is followed by *Tectona grandis* with 84907.70cm² as compared to other species. The average basal area (ABA) of the woody species in STHC campus ranged from 14.53cm² (in *Duranta plumieri*) to 3289.14cm² (in *Tamerindus indica*) with a total average basal area of 31721.07cm² (Table 5). Figure 8 shows top 10 woody species having maximum ABA in the study area. Three woody species –*Tamarindus indica, Entralobium saman, and Syzigium cumni* comes under top 10 categories in the study site with higher average basal area.
Diversity of woody species

Species diversity is one of the most important measures of community structure and it has been related to various ecological factors. The diversity of woody species, particularly trees is fundamental to plant diversity because they provide resources and habitats for almost all other species. In this study, various diversity indices- Shannon-Weaver’s Species Diversity Index, Simpson’s Species Diversity Index, Species Richness, Species Evenness, and Indices of Heterogeneity of woody species were estimated (Table 5).

Table 5: Diversity indices of woody species in the study area of STHC

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diversity Indices</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shannon-Weaver Species Diversity Index (H’)</td>
<td>2.556</td>
</tr>
<tr>
<td>2</td>
<td>Simpson's Diversity (D)/ Dominance Index (DI)</td>
<td>0.124</td>
</tr>
<tr>
<td>3</td>
<td>Margalef’s Index of Species Richness (R_{Margalef})</td>
<td>7.238</td>
</tr>
<tr>
<td>4</td>
<td>Pielou's Index of Species Evenness (E_{Pielou})</td>
<td>0.655</td>
</tr>
<tr>
<td>5</td>
<td>Simpson's Concentration of Dominance (cd/λ)</td>
<td>0.876</td>
</tr>
<tr>
<td>6</td>
<td>Species Heterogeneity</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Shannon-Weaver’s Species Diversity Index (H’) of woody species in the study area is noted as H’ =2.567, whereas the Simpson’s Dominance/Diversity Index is estimated as (D/DI =0.124). Mousumi Garai et al. recorded Shannon index value of tree species ranges from 2.435 to 2.788 and also recorded dominance index (D) of tree species ranges from 0.072 to 0.115 in three study sites of Durgapur Government college campus. The lower species diversity indicates heterogenous distribution of woody species in STHC campus. The lower diversity could be due to lower rate of evolution and diversification of communities.

The concept of species diversity relates simply to “richness” of a community or geographical area in species. In this study, Margalef index of species richness was estimated as SR_{Margalef} =7.238 (Table 5). Mousumi Garai et al. recorded Margalef’s species richness index of tree species ranges from 3.795 to 4.991 in three study sites of Durgapur Government college campus. Tree species richness at defined study sites and in minimum diameter classes gives a reliable instrument to indicate the diversity level of a study site.

Pielou’s Index of Species Evenness was noted as E_{Pielou} =0.655 in the study area (Table 5). Mousumi Garai et al. noted an evenness index value as 0.7186 to 0.8123 for tree species in three study sites of Durgapur Government college campus. Simpson’s Concentration of Dominance (λ) of woody species was estimated in the study area and the results (Table 5) indicate that the concentration of dominance is λ =0.876. Species heterogeneity attribute of woody species in the study area is recorded as SH =0.936 (Table 5).
Plant diversity of an area is related to a variety of factors. Attempts to identify the trends in geographical distribution of plant diversity are an important task. The saving and establishment of plant communities is an essential duty of human society for conservation and avail the immense benefits of biodiversity. From the results of present study, it is concluded that proper management and conservative measures need to be implemented for conservation of woody plant varieties in the study area of S.T. Hindu College campus in Nagercoil. Because, the distribution pattern of most of the woody species found in the study area are comes under rare/very rare as well as contagious (patchy) communities. The results of this study also stress that there is a need to carry out efforts to documenting the available plant species in the human habitats, which can be lost from the natural environment, otherwise it will leads to desertification which associated with human activities.

Acknowledgement
The authors express sincere thanks to the Management Authorities, Principal, S.T. Hindu College, and HOD, Department of Botany & Research Centre, S.T. Hindu College, Nagercoil, Kanniyakumari District, Tamil Nadu, India for providing necessary facilities and encouragement.

REFERENCES