Influence of Moisture Regimes on Yield and Water Use Efficiency of Chickpea Cultivars (Cicer arietinum L.)

D. Swetha† and S. A. Hussain²

†Ph.D Scholar, ²Professor
Agronomy, College of Agriculture, Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad

*Corresponding Author E-mail: swetha.dasari21@gmail.com
Received: 2.08.2017 | Revised: 8.08.2017 | Accepted: 9.08.2017

ABSTRACT
A field experiment was conducted at College farm, Acharya N.G. Ranga Agricultural University, Hyderabad during rabi, 2013-14 to study the yield and water use efficiency of gram influenced by irrigation levels. Irrigation levels has shown significant influence on yield and water use efficiency. Among four irrigation schedules, Irrigation scheduled at 0.6 IW:CPE (I₃) produced significantly higher grain and haulm yields of chickpea but it was on par with 0.9 IW:CPE (I₄). The JG-11 variety has produced higher grain yield than Annegiri. Water use efficiency decreased with increase in irrigation level from I₁ (Rainfed), to I₄ (0.9 IW:CPE) treatments. Moisture regimes at higher level i.e. 0.9 IW:CPE ratio requires more water compared to other lower levels. The lowest water use was recorded under I₄ (0.9 IW:CPE) treatment.

Key words: Chickpea, Yield, Irrigation scheduling, IW/CPE ratio, WUE.

INTRODUCTION
Chickpea (Cicer arietinum L.) is a rabi pulse crop and largest produced food legume in South Asia and the third largest produced food legume globally. It is predominantly grown on residual soil moisture as is evident from the fact that of the total area in the country, only 1.96 million ha (28.3%) is irrigated³. Experimental results of Bhaskara Reddy¹ revealed that keeping the total quantity of irrigation water constant, increasing the frequency of irrigation would maximize the yields in several crops. Because of high productivity under assured irrigation, a climatological approach based on IW/CPE ratio in irrigation scheduling has been found most appropriate as it integrates most of the weather parameters which determine the water requirement of a crop and increase production by at least 15 to 20 per cent⁴. Since many years farmers were following the same irrigation schedule irrespective of the varieties cultivated without knowing its feasibility under today’s climatic conditions. Hence, today’s limited water resources along with changing cropping patterns calls for urgent need for application of water at an appropriate intervals or ensuring better water use efficiency. Keeping this in view, this study was undertaken to investigate the influence of moisture regimes on yield and water use efficiency of chickpea cultivars.
MATERIALS AND METHODS
A field experiment was conducted to during *rabi*, 2013-2014. The research work was carried out at College Farm, College of Agriculture, Rajendranagar, Hyderabad. The soil of the experimental field was sandy loam in texture with pH of 7.8. The soil was low in available nitrogen (226 kg ha\(^{-1}\)), available phosphorus (18.5 kg ha\(^{-1}\)) and medium in available potassium (235 kg ha\(^{-1}\)) contents. The experiment was laid out in a randomized block design (two factors) with one factor I: treatments of four moisture regimes viz., \(I_1\) (Rainfed), \(I_2\) (0.3 IW:CPE), \(I_3\) (0.6 IW:CPE), \(I_4\) (0.9 IW:CPE) and factor II : varieties JG-11 and Annegiri and replicated thrice. Chickpea was sown after treating the seed with Rhizobium and were hand dibbled @ 2 seeds hill\(^{-1}\) at a depth of 6 cm and sowing was carried out in N-S direction leaving 10 cm space between two hills with a row to row gap of 30 cm. Immediately after sowing basal application of N-20, P\(_2\)O\(_5\)-50, K\(_2\)O-40 kg ha\(^{-1}\) was applied. The mean daily maximum temperature during the crop period ranged from 27.4\(^{\circ}\)C to 32.8\(^{\circ}\)C with an average of 28.9\(^{\circ}\)C, while the daily mean minimum temperature ranged from 7.51\(^{\circ}\)C to 18.53\(^{\circ}\)C with an average of 13.9\(^{\circ}\)C. The mean pan evaporation (USWB- class A pan) recorded during the crop period ranged from 1.73 to 4.51 mm day\(^{-1}\) with an average of 3.19 mm day\(^{-1}\). In general, the weather was congenial for the cultivation of chickpea during *rabi*, 2013-2014. Yield were recorded at harvest and water use efficiency is The weight of economic yield per unit of water used is referred to as water use efficiency and was calculated by using the formula given by Viets\(^{14}\).

\[
\text{WUE (kg ha}^{-1} \text{ mm}^{-1}) = \frac{\text{Economic yield (kg ha}^{-1}\)}{\text{Water used (mm)}}
\]

RESULTS AND DISCUSSION
The results of the investigation, regarding the chickpea on yield and water use efficiency content have been presented in Table 1 & 2.

Grain Yield
The highest grain yield was obtained when irrigation was scheduled at an IW:CPE ratio of 0.6 (\(I_3\)) (1882 kg ha\(^{-1}\) and 1655 kg ha\(^{-1}\) for JG-11 and Annegiri, respectively), but it was on par with \(I_4\) (IW:CPE-0.9) (1722 kg ha\(^{-1}\) and 1542 kg ha\(^{-1}\) for JG-11 and Annegiri, respectively) treatment. The higher grain yield with more frequent irrigation might be accounted for their favourable influence on the growth characters (plant height and number of branches respectively) and yield attributing characters (no. of pods plant\(^{-1}\) and test weight, respectively). In case of \(I_4\) treatment which provide maximum frequency of irrigation (four irrigations), the decrease in grain yield as compared to \(I_3\) treatment might be due to frequent irrigations leading to relatively lesser seed filling. Similar findings were reported by Palled *et al.*\(^{7}\), Chandrasekhar and Saraf\(^{2}\). The JG-11 variety recorded significantly higher grain yield (1882 kg ha\(^{-1}\) at 0.6 IW:CPE ratio) as compared to Annegiri (1655 kg ha\(^{-1}\) at 0.6 IW:CPE ratio). These results were in conformity with Naik *et al.*\(^{6}\), Rao *et al.*\(^{10}\).

Interaction effect between irrigation levels and varieties was non significant with regard to the grain yield.

Haulm yield
Irrigation level \(I_3\) recorded the maximum haulm yield (893 kg ha\(^{-1}\) and 794 kg ha\(^{-1}\) for JG-11 and Annegiri, respectively), but was on par with \(I_4\) treatment (822 kg ha\(^{-1}\) and 657 kg ha\(^{-1}\) for JG-11 and Annegiri, respectively). The increase in haulm yield with increased in...
irrigation frequency of irrigation might be accounted for high vegetative growth and dry matter production. Similar findings were reported by Dabhi et al.3 and Singh et al.11. The varieties significantly differ among themselves higher haulm yield was obtained with JG-11 variety (893 kg ha-1) when compared with Annegiri (794 kg ha-1). Similar findings were reported by Rao et al.10. Interaction effect of irrigation schedules and varieties has shown inconsistency which resulted in non significant.

Water use efficiency (kg ha-1mm-1)

The data (table 2) reveals that the highest irrigation level \textit{I}_4 recorded the lowest water use efficiency of 7.83 kg ha-1mm-1 and 4.66 kg ha-1mm-1 for JG-11 and Annegiri respectively. With the increase in irrigation level, the water use efficiency decreases. The \textit{I}_1 (control) recorded the highest water use efficiency of 9.41kg ha-1mm-1 and 6.68 kg ha-1mm-1 for JG-11 and Annegiri respectively, compared to the other higher levels of moisture regimes. This finding is in conformity with Srivastava and Srivastava13, Singh et al.12, Pramanik et al.9.

Table 1: Yield of chickpea varieties influenced by varied moisture regime

<table>
<thead>
<tr>
<th>TREATMENTS</th>
<th>Grain yield (kg ha-1)</th>
<th>Haulm yield (kg ha-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>T1-CONTROL</td>
<td>1245</td>
<td>1008</td>
</tr>
<tr>
<td>T2-0.3 IW:CPE</td>
<td>1567</td>
<td>1323</td>
</tr>
<tr>
<td>T3-0.6 IW:CPE</td>
<td>1882</td>
<td>1655</td>
</tr>
<tr>
<td>T4-0.9 IW:CPE</td>
<td>1722</td>
<td>1542</td>
</tr>
<tr>
<td>Mean</td>
<td>1604</td>
<td>1382</td>
</tr>
<tr>
<td>SE(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor A</td>
<td>72.05</td>
<td>218.55</td>
</tr>
<tr>
<td>Factor B</td>
<td>101.90</td>
<td>309.07</td>
</tr>
<tr>
<td>Factor (A x B)</td>
<td>144.10</td>
<td>NS</td>
</tr>
</tbody>
</table>

IW:CPE – Irrigation Water: Cumulative Pan Evaporation+

V1- JG-11, V2-Annegiri, Factor A-Varieties, Factor B- Irrigation levels

Table 2: Total water use and water use efficiency (WUE) of chickpea varieties under varied moisture regime

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total (E_{T})</th>
<th>(E_{TC}) (mm day-1)</th>
<th>WUE (kg ha-1mm-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
<td>V1</td>
</tr>
<tr>
<td>T_1-Control</td>
<td>155</td>
<td>148</td>
<td>1.55</td>
</tr>
<tr>
<td>T_2-0.3 IW:CPE</td>
<td>193</td>
<td>170</td>
<td>1.93</td>
</tr>
<tr>
<td>T_2-0.6 IW:CPE</td>
<td>200</td>
<td>182</td>
<td>2.00</td>
</tr>
<tr>
<td>T_2-0.9 IW:CPE</td>
<td>220</td>
<td>204</td>
<td>2.2</td>
</tr>
</tbody>
</table>

IW:CPE - Irrigation Water: Cumulative Pan Evaporation

V1- JG-11, V2-Annegiri
CONCLUSION

Form for going discussion, it can be concluded that, irrigation scheduled at 0.6 IW:CPE (I₃) produced significantly grain and haulm yields of chickpea but it was on par with 0.9 IW:CPE (I₄). The JG-11 variety has produced higher grain yield than Annegiri. The water use efficiency decreased with an increase in irrigation regime. The highest and lowest water use efficiency were recorded under I₁ (rainfed) and I₄ (IW:CPE ratio-0.9) treatments respectively.

REFERENCES

