

Herbicides Combinations for Control of Complex Weed Flora in Transplanted Rice

S. Krishnaprabu*

Assistant Professor, Department of Agronomy, Faculty of Agriculture,
Annamalai University, Annamalainagar 608 002

*Corresponding Author E-mail: prabu1977krishna@gmail.com

Received: 16.03.2018 | Revised: 19.03.2018 | Accepted: 28.04.2018

ABSTRACT

The puddled transplanted rice is infested with mix of grasses, sedges and broad-leaf weeds in India. For control of mixed weed flora, different herbicide combinations were evaluated in a field experiment conducted in summer of 2017 and 2018 at Experimental Farm, Annamalai University, Annamalainagar. The experimental field was infested with *Echinochloa spp.*, *Ischaemum rugosum*, *Caesulia axillaris*, *Cyperus iria* and *Ammania baccifera*. The performance of pre- or early post-emergence herbicides applied alone was poorer during 2017. The differential rainfall during both the years influenced the efficacy of herbicides. The herbicide treatments integrated with hand weeding recorded good weed control during both the years. Pre-emergence application of pyrazosulfuron-ethyl at 20 g/ha + one hand weeding or bispyribac-sodium 25 g/ha applied as alone or as tank-mix with ethoxysulfuron 18.7 g/ha recorded the highest weed control efficacy, rice grain yield and net returns during both the years and seemed to be the best ways of controlling complex weed flora and enhancing productivity and profitability from transplanted rice.

Key words: Herbicides, Rainfall, Tank-mixture, Transplanted rice, Weeds.

INTRODUCTION

Rice (*Oryza sativa* L.) is the second major crop of Punjab, after wheat. It is traditionally raised by transplanting seedlings in a puddled field. It was cultivated on 2.9 million hectares area with total production of 16.7 million tonnes during 2014-15⁶. The water resources of the state, however, could support 1.6 million hectare area only. The deficit had to be met by extracting the water from ground water

resources putting these resources under stress. This over-exploitation of ground water has resulted in decline in water table at the rate of 0.74 cm/year¹⁶. This situation becomes worse in years of deficit and/or erratic monsoon. In the absence of adequate water supply, the weeds emerge at higher densities (35% more weed density and biomass) in the transplanted rice¹ and reduce the yield of transplanted rice by 15-20%¹⁵.

Cite this article: Krishnaprabu, S., Herbicides Combinations for Control of Complex Weed Flora In Transplanted Rice, *Int. J. Pure App. Biosci.* 6(2): 1705-1709 (2018). doi: <http://dx.doi.org/10.18782/2320-7051.7548>

Moreover, depth of the standing water influences the type and density of the weed flora^{9,11} and also efficacy of applied pre-emergence herbicides. The weed flora of transplanted rice consist of annual grasses, sedges and broad-leaf weeds. Pre-emergence herbicides like butachlor, pretilachlor, oxadiargyl, pyrazosulfuron, pendime-thalin and anilofos require stagnation of water in fields for achieving effective weed control, which is not possible in all the areas owing to scarcity of irrigation water. Post-emergence application of bispyribac-sodium have been found to be effective against annual grasses and sedges; and metsulfuron-methyl, ethoxysulfuron-ethyl, bensulfuron-methyl, azimsul-furon against broad-leaf and sedges in transplanted rice. The continuous use of same herbicides having similar modes of action resulted in shift in weed problem¹³ and development of herbicide resistance in weeds¹⁴. In a long term study at Ludhiana, continuous use of pretilachlor resulted in weed flora shift from *Echinochloa* spp. to *Ischaemum rugosum*, and of anilofos to *Caesulia axillaris* and *Cyperus iria*⁵. The use of tank-mix/ready-mix herbicide having dissimilar modes of action can be of an option for management of complex weed flora in transplanted rice¹⁷, which will not only reduce the total volume of herbicide use but also ease and economize its application. The present study was conducted to evaluate the efficiency of combination of herbicides against complex weed flora in transplanted rice.

MATERIAL AND METHODS

A field experiment was conducted at Experimental Farm, Annamalai University, Annamalainagar during summer season of 2017 and 2018. The experimental soil was loamy sand with pH 7.43 and EC 0.22 dS/m and it was low in organic carbon (0.27%) and available N (170 kg/ha) and medium in available P (20.5 kg/ha) and available K (185 kg/ha). The experiment was laid out in randomized complete block design with 3 replications. The twelve weed control treatments comprised of bispyribac-sodium

(10%) 25 g/ha, pretilachlor (50%) 1000 g/ha, penoxsulam (24%) 22.5 g/ha, pyrazosulfuron-ethyl (10%) 20 g/ha, tank-mix of bispyribac-sodium 25 g + ethoxysulfuron-ethyl (15%) 18.75 g/ha, bispyribac-sodium 20 g + metsulfuron-methyl (10%) + chlorimuron-ethyl (10%) 4 g/ha, pretilachlor 750 g followed by (fb) ethoxysulfuron-ethyl 18.75 g/ha, pretilachlor 750 g fb metsulfruron + chlorimuron 4 g/ha, pyrazosulfuron-ethyl 20 g/ha fb manual weeding, pretilachlor (6%) + bensulfuron (0.6%) 660 g/ha, hand weeding at 25 and 45 DAT and weedy check. One manual weeding was done at 25 days after transplanting (DAT). The 30 days old seedlings of rice cv. PR 114 (2017) and PAU 121 (2018) were transplanted in puddled field during third week of June. The pre-emergence herbicides-pretilachlor, pyrazosulfuron-ethyl and pretilachlor (6%) + bensulfuron (0.6%) were broadcasted uniformly in standing water by mixing with 150 kg sand/ha at 0-5 DAT. Early-post-emergence herbicide-penoxsulam was applied by spray using 375 litres of water at 10-12 DAT. Post-emergence herbicides-bispyribac-sodium, ethoxysulfuron-ethyl, and metsulfuron-methyl (10%) + chlorimuron-ethyl were applied with hand operated knap sack sprayer fitted with flat fan nozzle by mixing with 375 litres of water/ha at 25 DAT. The field was drained before spray of early post- and post-emergence herbicides and irrigation was given one day after spray. The crop was raised as per recommended package of practices except for weed control treatments. The data on weed population and dry matter, crop growth and yield was recorded. Weed data was square-root transformed before statistical analysis. The data were analyzed by using standard statistical procedures and comparisons were made at 5% level of significance.

RESULTS AND DISCUSSION

Effect on weeds

The experimental field was infested with grasses namely *Echinochloa* spp., *Ischaemum rugosum*; sedges mainly *Cyperus iria*; and broad-leaf weeds namely *Caesulia axillaris*

and *Ammania baccifera* (Table 1). The application of bispyribac-sodium either alone or tank-mixed with chlorimuron + metsulfuron or ethoxysulfuron at 25 DAT recorded effective control of mixed weed flora (Table 1 and 2) and it was at par with two hand weeded plots and pyrazosulfuron broadcasted at 0-3 DAT *fb* one hand weeding at 25 DAT. In

2017, the performance of pre-or early post-emergence herbicides applied alone was poor (with WCE varied from 1.3- 40.5%) while in 2018, all the herbicides recorded good control of weeds. In 2018, tank mix application of bispyribac with ethoxysulfuron and chlorimuron + metsulfuron.

Table 1: Effect of weed control treatments on population of different weed species at 60 DAT in transplanted rice during 2017 and 2018

Treatment	Dose (g/ha)	<i>Echinochloa</i> spp.		<i>Ischaemum rugosum</i>		<i>Caesulia axillaris</i>		<i>Ammania Cyperus iria</i>	
		2017	2018	2017	2018	2017	2018	2017	2018
Bispyribac-Na	25	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	2.4 (9)	2.0 (5)	3.0 (17)	1.0 (0)
Pretilachlor	1000	3.0 (10)	1.7 (3)	4.4 (19)	2.1 (4)	5.6 (31)	2.0 (5)	1.0 (0)	3.1 (12)
Penoxsulam	22.5	3.1 (9)	2.4 (6)	4.8 (23)	2.3 (5)	3.8 (14)	5.8 (35)	1.7 (2)	2.4 (9)
Pyrazosulfuron	20	5.6 (30)	4.3 (19)	4.3 (18)	1.2 (1)	3.6 (15)	1.4 (1)	1.5 (2)	2.0 (5)
Bispyribac + ethoxysulfuron	25 + 18.75	3.3 (11)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)
Bispyribac + (chlorimuron 10% + metsulfuron 10%)	20 + 4	1.7 (3)	1.0 (0)	1.9 (4)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)
Pretilachlor <i>fb</i> ethoxysulfuron	750 <i>fb</i> 18.75	2.4 (6)	3.0 (10)	3.9 (15)	1.7 (3)	1.0 (0)	1.0 (0)	1.0 (0)	2.2 (7)
Pretilachlor <i>fb</i> (chlorimuron 10% + metsulfuron 10%)	750 <i>fb</i> 4	3.1 (10)	3.7 (13)	4.3 (19)	3.1 (9)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)
Pyrazosulfuron <i>fb</i> manual weeding	20 <i>fb</i> HW	1.5 (10)	3.1 (10)	3.1 (11)	2.1 (4)	1.0 (0)	1.0 (0)	1.0 (0)	4.0 (15)
Pretilachlor (6%) + bensulfuron	660	3.2 (9)	3.9 (15)	3.5 (13)	2.7 (7)	3.1 (11)	2.1 (4)	1.0 (0)	1.9 (4)
HW at 25 and 45 DAS	-	2.2 (5)	1.4 (1)	2.9 (9)	1.0 (0)	1.0 (0)	2.8 (9)	1.8 (3)	2.2 (7)
Weedy check	-	4.7 (22)	5.6 (31)	4.6 (20)	3 (9)	3.5 (15)	4.5 (20)	3.1 (9)	4.7 (23)
LSD (P=0.05)	-	1.9	1.6	1.8	1.2	2.3	2.0	NS	NS

Data is subjected to square root transformation. Figure in parentheses are original value

Table 2: Effect of weed control treatments on weed biomass at 60 DAT in transplanted rice during 2017 and 2018

Treatment	Dose (g/ha)	Weed biomass (g/m ²)						Weed control	
		Grasses		Broad-leaves		Sedges		efficiency (%)	2017
		2017	2018	2017	2018	2018	2017		
Bispyribac-Na	25	1.0 (0)	1.0 (0)	4.9 (54)	1.0 (0)	3.4 (22)	93.2	96.3	
Pretilachlor	1000	17.1 (300)	4.4 (25)	12.9 (172)	2.4 (9)	3.6 (15)	40.5	91.7	
Penoxsulam	22.5	20.7 (444)	6.3 (41)	7.9 (62)	3.9 (20)	5.1 (36)	36.4	83.5	
Pyrazosulfuron	20	26.4 (708)	11.1 (137)	7.2 (78)	2.2 (7)	1.9 (4)	1.3	74.8	
Bispyribac + ethoxysulfuron	25 + 18.75	8.0 (64)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	92.0	100	
Bispyribac + (chlorimuron 10% + metsulfuron 10%)	20 + 4	6.9 (66)	1.0 (0)	1.0 (0)	1.0 (0)	1.0 (0)	91.7	100	
Pretilachlor <i>fb</i> ethoxysulfuron	750 <i>fb</i> 18.75	12.0 (152)	8.3 (94)	1.0 (0)	2.3 (8)	2.8 (13)	80.9	80.4	
Pretilachlor <i>fb</i> (chlorimuron 10% + metsulfuron 10%)	750 <i>fb</i> 4	16.5 (274)	9.8 (98)	1.0 (0)	1.0 (0)	1.0 (0)	65.6	83.3	
Pyrazosulfuron <i>fb</i> manual weeding	20 <i>fb</i> HW	7.5 (76)	8.6 (75)	1.0 (0)	1.0 (0)	4.5 (21)	90.5	83.6	
Pretilachlor (6%) + bensulfuron (0.6%)	660	14.4 (226)	11.5 (137)	7.6 (92)	1.9 (4)	1.8 (3)	60.1	75.5	
HW at 25 and 45 DAS	-	6.8 (64)	2.3 (8)	1.0 (0)	2.8 (8)	1.9 (4)	92.0	96.6	
Weedy check	-	26.4 (702)	23.1 (534)	8.2 (94)	3.9 (14)	5.8 (39)	-	-	
LSD (P=0.05)	-	6.4	4.8	6.6	NS	NS	-	-	

Data is subjected to square root transformation. Figure in parentheses are original value

provided complete control of complex weed flora including grasses, broad-leaves and sedges (Table 1); bispyribac alone and integrated use of pyrazosulfuron with one hand weeding were at par with these two treatments ultimately resulting into the highest weed

control efficiency. The benefit of tank mix of these herbicides was not recorded in 2017. The poor efficacy of pre-emergence herbicides in 2017 might be related to dry weather as only 3.5 mm rainfall was received in June. The year 2018 turned out to be wet year as 296.4 mm

rainfall was received in June 2018. However, the herbicide treatments integrated with hand weeding or hand weeding alone treatment recorded similar weed control during both the years. This differential effect of rainfall on herbicides and hand weeding treatments indicated the importance of good rainfall or good soil moisture for getting best weed control from the herbicides^{4,8} and increasing water depths also increased the herbicide's efficacy. The effective control of mixed weed flora with penoxsulam 25 g/ha applied at 0-5 DAT^{2,12}, of bispyribac-sodium at 20-30 g/ha as post-emergence against *Echinochloa colona* and *Cyperus* sp.^{18,10} and of pyrazosulfuron-ethyl at 20 and 25 g/ha applied at 3 DAT against *C. iria*³ has been reported earlier.

Effect on crop and economic returns

The phytotoxicity of different herbicides on crop was observed and found variable results in two years. Tank mix application of bispyribac-sodium with chlorimuron+ metsulfuron recorded 92% weed control efficiency during 2017 but it resulted in yellowing of foliage and suppression of plant growth, and resulting in lowered rice grain yield; whereas all the herbicides were found safe to the rice crop during 2018. The environmental factors like solar radiation, temperature, relative humidity play a significant role on bio-efficacy and phytotoxicity of herbicides. The effective weed control in different herbicidal and integrated

weed control treatments increased the number of effective tillers and the plants produced longer panicles as compared to weedy check (Table 3). The sequential application of pyrazosulfuron and one hand weeding at 25 DAT recorded the highest rice grain yield, net returns and B: C ratio in 2012 (Table 3). Pyrazosulfuron and pretilachlor alone or when followed by chlorimuron+ metsulfuron or pre-mix of pretilachlor with bensulfuron recorded rice grain yield at par to weedy check which was attributed to higher weed pressure under these treatments. Another probable reason for lower rice grain yield in 2012 might be the incidence of sheath blight in rice crop in all the plots. In 2013, bispyribac alone and as tank mix with chlorimuron + metsulfuron or with ethoxysulfuron recorded the highest rice grain yield, net returns and B: C ratio (Table 3). Pre-emergence herbicides when applied in combination with either post-emergence herbicide or manual weeding recorded more weed control efficiency, net returns and B: C ratio as compared to their sole application. Hossain and Mondal⁷ also reported higher rice grain yield with post-emergence application of bispyribac + ethoxysulfuron, pretilachlor fb metsulfuron-methyl + chlorimuron-ethyl, pyrazosulfuron fb. manual weeding, pretilachlor + bensulfuron and weed-free check than sole application of bispyribac-sodium, pretilachlor and pyrazosulfuron and early post-emergence application of penoxsulam.

Table 3: Effect of weed control treatments on grain yield and yield attributes of transplanted rice during 2017 and 2018

Treatment	Dose (g/ha)	Plant height at harvest		Panicle (no./m ²)	Grain yield (t/ha)	Benefit-cost ratio	
		2017	2018			2017	2018
		2017	2018	2017	2018	2017	2018
Bispyribac-Na	25	59.7	67.6	328	363.3	22.5	25.7
Pretilachlor	1000	66.3	69.5	200	358.3	21.2	25.9
Penoxsulam	22.5	51.7	69.3	175	351.6	20.5	25.1
Pyrazosulfuron	20	54.3	63.5	113	203.3	21.4	23.3
Bispyribac + ethoxysulfuron	25 + 18.75	65.0	69.7	327	356.7	25.2	26.2
Bispyribac + (chlorimuron 10% + metsulfuron 10%)	20+4	61.1	70.9	328	368.3	23.7	26.6
Pretilachlor fb ethoxysulfuron	750 fb 18.75	55.8	69.0	241	341.7	20.5	25.3
Pretilachlor fb + (chlorimuron 10% + metsulfuron 10%)	750 fb 4	58.7	69.1	251	353.3	22.1	26.9
Pyrazosulfuron fb manual weeding	20 fb HW	59.5	68.8	331	338.3	24.4	26.6
Pretilachlor (6%) + bensulfuron (0.6%)	660	58.4	67.3	243	295.0	23.1	24.4
HW at 25 and 45 DAS	-	62.2	70.7	341	365.0	23.6	26.4
Weedy check	-	53.5	62.6	122	201.6	19.7	22.5
LSD (P=0.05)	-	NS	5.1	103.5	67.4	3.3	2.3
					1.93	1.77	-

The study concluded that post-emergence application of bispyribac alone and as tank-mix with ethoxysulfuron or chlorimuron + metsulfuron or pre-emergence pyrazosulfuron + one hand weeding seems to be the best ways of controlling complex weed flora and enhancing productivity and profitability from transplanted rice.

REFERENCES

1. Misra, A., Tosh, G. C., Nanda, K. C., Effects of herbicides and water management regimes on weeds and grain yields of transplanted rice in India. *International Rice Research Newsletter* **6(5)**: 20-21 (1981).
2. Pal, S. and Banerjee, H., Efficacy of penoxsulam against weeds in transplanted Kharif rice (*Oryza sativa* L.). *Indian Journal of Weed Science* **39(3&4)**: 172-175 (2007).
3. Pal, S., Ghosh, R. K., Banerjee, H., Kundu, R. and Alipatra, A., Effect of pyrazosulfuron-ethyl on yield of transplanted rice. *Indian Journal of Weed Science* **44(4)**: 210-213 (2012).
4. Phogat, B. S., Pandey, J. and Pandey, J., Effect of water regime and weed control on weed flora and yield of transplanted rice (*Oryza sativa*). *Indian Journal of Agronomy* **43(1)**: 77 (1998).
5. Anonymous, All India Coordinated Research Programme on weed management, *37th Annual Progress Report*, ICAR-DWR Ludhiana Centre. 100 p (2014).
6. Anonymous, *Package of Practices for Crops of Punjab Kharif*. Punjab Agricultural University, Ludhiana.15 p (2016).
7. Hossain, A. and Mondal, D. C., Weed management by herbicide combinations in transplanted rice. *Indian Journal of Weed Science* **46(3)**: 220-223 (2014).
8. Kabir, M. H., Bari, M. N., Haque, M. M., Ahmed, G. J. U. and Islam, A. J. M. S., Effect of water management and weed control treatments on the performance of transplanted aman rice. *Bangladesh Journal of Agricultural Research* **33(3)**: 399-408 (2008).
9. Kent, R. J. and Johnson, D. E., Influence of flood depth and duration on growth of lowland rice weeds, Cote d'Ivoire. *Crop Protection* **20(8)**: 691-694 (2001).
10. Kumar, S., Rana, S. S., Chander, N. and Ramesh, Mixed weed flora management by bispyribac-sodium in transplanted rice. *Indian Journal of Weed Science* **45(3)**: 151-155 (2013).
11. Kumar, V. and Ladha, J. K., Direct seeding of rice: Recent developments and future research needs. *Advances in Agronomy* **111**: 297-413 (2011).
12. Prakash, C., Shivran, R. K. and Koli, N. R., Bioefficacy of penoxsulam against broad-spectrum weed control in transplanted rice. *Indian Journal of Weed Science* **45(4)**: 228-230 (2013).
13. Rajkhowa, D. J., Borah, N., Barua, I. C. and Deka, N. C., Effect of pyrazosulfuron-ethyl on weeds and productivity of transplanted rice during rainy season. *Indian Journal of Weed Science* **38**: 25-28 (2006).
14. Rao, V. S., *Principles of Weed Science*. 2nd edn. Oxford & IBH Publishing Co. Pvt. Ltd. pp. 277 (1999).
15. Reddy, B. S., Reddy, S. R., Effect of soil and water management on weed dynamics in lowland rice. *Indian Journal of Weed Science* **31(3&4)**: 179-182 (1999).
16. Vashisht, A. K., Status of water resources in Punjab and its management strategies. *Journal of Indian Water Resources Society* **28(3)**: 1-8 (2008).
17. Yadav, D. B., Singh, S. and Yadav, A., Evaluation of azimsulfuron and metsulfuron-methyl alone and in combination for weed control in transplanted rice. *Indian Journal of Weed Science* **40(1&2)**: 16-20 (2008).
18. Yadav, D. B., Yadav, A. and Punia, S. S., Evaluation of bispyribac sodium for weed control in transplanted rice. *Indian Journal of Weed Science* **41(1&2)**: 23-27 (2009).